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1 Algorithm details

Consider a corpus afi sentences (sequences) of variable length, each expressed in terms of
a lexicon of finite size N. The sentences in the corpus correspond different paths in a
pseudograph (a non-simple graph in which both loops and multiple edges are permitted) whose
vertices are the unique lexicon entries, augmented by two special symégis,andend. Each

of the N nodes has a number of incoming paths that is equal to the number of outgoing paths.
Figure S1 illustrates the type of structure that we seek, namely, the bundling of paths, signifying
a relatively high probability associated with a sub-structure that can be identified as a pattern.
To extract it from the data, two probability functions are defined over the graph for any given
search patt8 = (e; — ey — ... — ex) = (e1; ex).t The firstone Pr(e;; ¢;), is the right-moving

ratio of fan-through flux of paths at to fan-in flux of paths at,_,, starting ate; and moving

along the sub-path; — e;41 — €;42... = €;_1:

l(e;;e;)

l(ez, 6j—1>

(1)

PR(ei; ej) = p(ej‘ei€i+1ei+2--~€jfl) =

wherel(e;; e;) is the number of occurrences of sub-paihse;) in the graph. Proceeding in the

opposite direction, from the right end of the path to the left, we define the left-going probability

in general the notatiofe;; e;),j > i corresponds to a rightward sub-pathSfstarting withe; and ending
with e;. A leftward sub-path o8, starting withe; and ending witte; is denoted bye;;e;),i < j.



Figure S1: Comparison between a structured graph, of the type expected to appear in our prob-
lem (left), and one of random connectivity (right).

function Py

l(e;; e
Pr(ej; ;) = pleileivieipa...ej1e;) = l(é']e”r)l) ?
Jr <
and note that
l(el)
Prleiei) = Prlese) = oy — 3
rleisei) = Prle e = S 5 X

where N is the total number of vertices in the graph. Clearly, both functions vary between 0 and 1
and are specific to the path in question. The MEX algorithm is defined in terms of these functions
and their ratios. In Figure SZ}; first increases because some other paths join the search path
to form a coherent bundle, then decreaseslabecause many paths leave itdt To quantify

this decline ofPg, which we interpret as an indication of the end of the candidate pattern, we
define adecrease ratipDy(e;; e;), whose value at; is Dr(e;;e;) = Pgr(ei;e;)/Pr(ei;ej_1),

and require that it be smaller than a presetoff parametern, < 1 (in the present example,

Dg(e1,es5) = Prler, e5)/Pr(e1, es) < 3).



In a similar manner, the value @f, increases leftward; the poiat at which it first shows
a decreasé); (e;;e;) = Pr(ej;e;)/Pr(ej+1;€;) < ncan be interpreted as the starting point of
the candidate pattern. Large values/of and Dy signal a divergence of the paths that con-
stitute the bundle, thus making a pattern-candidate. Since the relevant probaldlities ;)
and P (e;; e;)) are determined by finite and possibly small numbers of pdtlas ¢;) out of
l(e;;e;-1)), we face the problem of small-sample statistics. We find it useful therefore to supple-
ment conditions such a8z (e;; e;) < 1 by a significance test based on binomial probabilities:

l(essej)

B(e;;ej) = Z Binom(l(e;;ej-1), x,nPr(ei;ej—1)) < asa < 1, (4)

z=0

We calculate bothP;, and Pr from all the possible starting points (suchedsande4 in the ex-
ample of Figure S2), traversing each path leftward and rightward, correspondingly. This defines

a matrix of the form

M.

]

PL(6],€Z) if ¢ <] (5)

One can writeM/ (S) in its explicit form, namely, as an instantiation of a variable-order Markov

Pr(e;;e;) ifi>j
(S) = {

model up to ordek, which is the length of the search-path:

p(er) pleilez) plerlezes) ... pleileges .. . ex)

p(ealer) ples) p(ezles) ... plealesey. .. ex)

M = plesleres) p(es|e2) p(es) ... plesleses .. .ex)
plexleres ... ex_1) plegleses...en1) plerleses...ex—1) ... plex)

Given the matriXxVI(S), we identify all the significanDg(e,; ;) andDy(eq;e.) (1 < a, b, ¢, d <
k) and their coinciding pairsi{r(eq; ey), Dr(ec; eq)), requiring thate < d < b < ¢. The pair
with the most significant scores (on both sidBg¢,; ;) andB(ey; e..)) is declared as the leading

pattern €,.1; ep_1).
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Figure S2: The definition of a bundle that serves as a candidate pattern, whose beginning and
end are signaled by the maximai@f and Px. It becomes a candidate because of the large drops
in these probabilities after the maxima, signifying the divergence of paths at these points.



Figure S3: An instance of ax 7 M matrix based on the black search path in Figure S2. The
blue and red arrows represent all the significant segmegts,; e,) and Dy (eq; e.) (o < 0.01),
respectively. The values of the matrix elements appear in the upper right corners of the cells.
The most significant pair of segmeni3(¢,; e;), B(eg; e.)) for whicha < d < b < ¢ is marked
theleading pattern(in this example the leading patterneis— e3 — ey).



Figure S4: Two instances of thd matrix computed from two different corpora: the SwissProt
database sequence of amino acidft), and the text oflice in the Wonderland@onsidered as

a sequence of lettersight). Significant changes in thB;, and Pr values have been colored

on a yellow/red scale and a cobalt/blue scale (increase and decrease, respectively); green is the
neutral color. The protein 017433 is the search path used to construct the matrix on the left; the
first paragraph ofliceis the search path used to create the matrix on the right. For visualization
purposes, only the first 300 elements of the matrices are shown.



2 Learning a simple Context-Free Grammar

2.1 Replicating the study of Adriaans and Vervoort (2002): EMILE 4.1

We replicated one of the experiments @) (“A 2000 Sentences Sample”, p.8). The aim of

the original experiment was to reconstruct a specific context-free grammar (29 terminals and 7
rules) from a corpus of 2000 sentences using the EMILE 4.1 algorithm. The results of applying
theADIOS algorithm to a 2000-sentence corpus randomly generated from the given context-free
grammar are shown in Table S1. The algorithm (used in its default Moge-A).6, o = 0.01,
recursion depth set to 15) yielded 28 patterns and 9 equivalence classes, and athigved
precision and9% recall. In comparison, the EMILE algorithm, as reported 1) {nduced
3000-4000 rules (the recall/precision performance of the EMILE algorithm was not stated). Ta-
ble S1 shows a comparison between the induced grammar and its target grammar. The upper
part of the table contains the extracted equivalence classes and their target counterparts, demon-
strating the ability ofaDIOS to identify most of the target classes (except one, E43). The lower
part of the table shows thabios distills a set of rules that is larger than the original one (but

equivalent to it).

2.2 Inferring the TA1 grammar: supplement to Figure 3A

Tables S2 to S5 show the performance ofaanos model trained on extremely small corpora
(200 sentences) generated by the TA1 artificial grammar (listed in Table S6). The tables present
the recall-precision values (with their standard deviations across 30 different trails) in four dif-
ferent running modesTable S2 Mode A (context free)Table S3 mode B (context-sensitive
mode);Table S4 “semantically supervised” mode, in which the equivalence classes of the target
grammar are made available to the learner ahead of time (training in ModaBlg S5 boot-

strap mode, which starts from a letter-level training corpus in which all spaces between words

are omitted (training in Mode A). In the first three experiments, the context-window length was



Table S1: A comparison between the target grammar of Adriaans and Verlgfgratd the
grammar induced by a singk10s instance (ight). Root patterns appear in bold.

target grammar

inferred grammar

[N P,] = John| Mary | the man| the child

E35=- child | man
P34=-the E35
E37=- John| Mary | P34

[P] = with | near]| in | from

E54=- with | near| in | from

[V;] = appears is | seemg looks

E39= appears is | seemg looks

[Vi] = thinks| hopeg tells | says

E51= thinks| hopes| tells | says

[Vi] = knows| likes | missed sees

E46=- knows]| likes | misseq sees

[ADV] = large| small| ugly | beautiful

E49= large| small| ugly | beautiful

[N P,] = the car| the city| the housé the shop

E43= house| shop

[S] = [NP][VI][ADV] | [NF,] [V F.] [ [NF.] [Vi] that [S]
[NP] = [NF,] | [NF)]
[V P = [VA] NPT | [Vi] NPT [PT[N F,]

E69=- P47| P59| P62| P66| P67
P40= the city

P41= the car

P36=- John likes E37
P42= the E43 E39
P44=- the house
P45= E37 E46

P47= P45 E37
P48=- E37 E39 E49
P50= E37 E51 that
P52=- P47 in the shop
P53= E54 P44
P55=- P47 near P40
P56= E54 P41

P57= E54 P40
P58=- P50 P50 P45 the shop
P59= P45 the shop
P60= P41 E39 E49
P61= P42 E49
P62= P45 P40
P63=- P50 P50 P48
P64=- E54 the shop
P65= P50 P62 P64
P66= P45 P44
P67= P45 P41
P68= E69 P53
P70= P38 E49
P71= E69 P57




Table S2: Mode A (Context-Free).

corpus size L recall precision | F1
200 9| 0.3+0.2 09+0.1 | 045
200 8| 04+0.2 |0.93+0.09|0.59
200 7| 06+0.1 09+0.1 |0.71
200 6| 0.7+0.1 09+0.2 | 0.78
200 5|0.78+£0.08] 0.8+0.2 |0.80
200 410.83+0.06| 0.8+0.2 |0.81
200 3/0.84+0.06| 0.6+0.2 |0.71

Table S3: Mode B (Context-Sensitive).

corpus size L recall precision | F1
200 9| 05+0.2 0.8+0.1 | 0.65
200 8| 0.6+0.1 |0.7840.09| 0.66
200 7| 0.61+0.07| 09+0.2 |0.72
200 6| 06+0.1 0.8+0.2 | 0.68
200 5| 0.61+0.09| 08+0.1 |0.69
200 41 0.69+0.05| 0.9+0.1 |0.79
200 3| 0.68+0.06 | 0.984+ 0.04 | 0.80

Table S4: Mode A, “semantically supervised”.

corpus size L recall precision| F1
200 8|0.86+0.06| 0.7+ 0.2 | 0.80
200 710.89+£0.04/0.84+0.2|0.84
200 6| 0.90+£0.04| 0.8+0.2| 0.85
200 5]0.90+£0.03| 0.8+0.2| 0.83
200 410.92+0.03| 0.8+0.2| 0.83
200 310.92+0.03| 0.9+0.2| 0.89
Table S5: Mode A, “no spaces”.
corpus size L recall precision | F1
200 3]0.01+£0.01|0.91+0.09| 0.01
500 3|0.07+£0.04| 0.89+ 0.08| 0.12
1000 3]10.13+£0.06| 0.8+£0.1 |0.23
2500 31]0.30+£0.07| 0.79+ 0.09| 0.43
5000 310.39+£0.08| 0.85+0.1 | 0.53
10000 | 3| 0.5+0.1 | 0.86+0.09| 0.65




Table S6: The TA1 grammar, consisting of 50 terminals and 28 rules.

o = s1|s2| s3| s4

sl = prec np2 vp ptag

s2 = frec np2 vp ftag

s3 = frec iv6 iv55

s4 = thatnp2 iv5 iv6 iv4 np2
np = art noun| propn

np2 = thenoun| propn

propn | = pvp2|p
pp = pandp vp6| p pandp vp6

vp = iv.andcom

vp2 = whotv np

com = np iv2

rec = p vp5thatrec| p vp5that
frec = pfvp5thatrec

ftag =, doesn’t she ?

prec = ppthatrec
ptag =, don’'t they ?

iv5 = isiv5-ex

ivS5 = IS iv55-ex

iv6 = 10 Iv6-ex

art = the|a

noun | = cat|dog| horse| cow| rabbit | bird
p = Joe| Beth| Jim| Cindy| Pam| George
pf = Beth| Cindy| Pam

vp5 = believeqd thinks

vp6 = believe| think

iv = meowg barks

iv2 = laughs| jumps| flies

ivS-ex | = easy| tough| eager

iv55-ex | = easy| tough

iv6-ex | = please read

iv4 = annoys worries| disturbs| bothers
tv = scolds| loves| adores| worships
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varied while the other parameters were kept fixed=(0.6, « = 0.01, corpus size 200). In the
bootstrap mode, the algorithm must first segment the sequence of letters into words (applying
only the MEX procedure without extracting equivalence classes), and only then use the identified
words to extract the grammar. This two-stage process requires a larger corpus to attain a compa-
rable level of performance (up 1®, 000 sentences in this example). Thus, in the last experiment

L was kept fixed at 3y was lowered td.4, and the corpus size ranged fr@o0 to 10, 000 sen-

tences. Performance was assessed by the F1 measure, defiheetalprecisiory(recall +
precision). The best recall/precision combinations appear in bold and are plotted in Figure 3A
in the main paper. It can be seen that both context free mode and context sensitive mode reach
similar F1 levels; however, while the context free mode gets higher levels of recall (83% versus
68%) the context sensitive mode gets higher level of precision (98% versus 80%). When seman-
tic information is available to the learner ahead of time, it gives rise to a significant improvement
in the learning performance (F1=0.89 versus 0.81), which parallels the documented importance
of embodiment cues in language acquisition by children. Figure S5 demonstrates the ability of
ADIOS to deal with the kind of syntactic phenomena that can be produced by the TA1 grammar

(e.g. “tough movement”).

3 Learning a complex Context-Free Grammar

3.1 Inferring the ATIS-CFG: supplement to Figure 3B

Table S7 illustrates the recall and precision performance for learning the 4592-rule ATIS Context
Free Grammard), using different parameter values ({8, 4, 5, §; 30 or 150 learners; corpus
size between 10,000 and 120,000 sentences). Figure S6 presents a schematic illustration of the

coverage of the target language by multiple learners, for various settings of L.
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Figure S5: An illustration of the ability ofD10s to deal with certain structure-dependent syntac-

tic phenomena. In this example, when trained on sentences exemplifying the so-called “tough
movement”,ADIOS forms patterns that represent the correct phrasess(easy to read, is

easy to please, is eager to read, is eager to please, to read is easy andto please is

easy), but does not over-generalize to the incorrect onés (&ad is eager or *to please is
eager).

4 Generativity of the learned grammar in natural language:
supplement to Figure 3C

Because the target grammar of a natural language is inaccessible, precision must be evaluated
by human subjects (referees), while recall can be evaluated by the same method described in
the sectionLanguage: computational grammar inductiam the main paper. In the present
experiment, thexbl0s algorithm was trained on the ATIS-N natural language corpus. This
corpus contain$3, 043 sentences of natural speech, in the Air Travel Information System (ATIS)
domain. Theablos algorithm was trained oh2, 700 sentences({y,qniny); the remaining 343
sentences were used to evaluate recall,(.;). Two groups of learners (30, 150) were trained

(n = 0.6, « = 0.01, L = 5) on different, order-permuted, versions of the corpus (several
representative acquired patterns appear in Figure S7 along withgéregralization factons

After training, each learner generated 100 sentences, which were then placed together into a

single corpus (th&..,...s test-corpus). Precision of thedbiOs representation (meatt std

12
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Figure S6: High values of L bring the learners into a low-productivity region where precision

is high, but the coverage of the target language is low. For low values of L, the learners tend to
over-generalize and thus acquire an inaccurate language that, however, does cover most of the
target. The proper balance is achieved by setting L to an intermediate value, so that the learners
cover a large portion of the target language, yet remain within the language boundaries.

Table S7: ATIS-CFG recall and precision.

corpus size No. of learners L | n | recall | precision| F1
10000 30 3]10.6|0.380| 0.623 |0.472
10000 30 410.6|0.308 0.657 |0.420
10000 30 5|0.6|0.180| 0.920 |0.301
40000 30 3]0.6|0.643| 0.568 | 0.603
40000 30 410.6|0.660 0.596 | 0.627
40000 30 5|0.6|0.456| 0.780 | 0.576
120000 30 3]0.6|0.910| 0.538 | 0.676
120000 30 4106|0750 0.580 | 0.654
120000 30 5|0.6|0.747| 0.640 | 0.689
120000 30 6| 0.6 0465 0.818 | 0.593
120000 150 3]0.6|1.000f 0.538 |0.700
120000 150 4106|1000 0.580 |0.734
120000 150 5|0.6|1.000f 0.640 |0.780
120000 150 6|0.6|0.600f 0.820 | 0.693
120000 150 710.6]0.230, 0.970 |0.372

13



dev) was estimated by having eight human subjects judge the acceptability of 20 sentences
taken fromCi.q..rs @nd of 20 sentences taken from the original ATIS-N corgus,(..n,). The

subjects had no indication which sentence belonged to which corpus; the sentences appeared in
a random order and each subject judged a different set of sentences. Altogether, 320 sentences
were evaluated. The original ATIS-N corpus was scoret &t 20% precision while theDios-
generated sentences attairi@dt: 7% precision. Recall was calculated using tig, ., corpus.

Sets of 30 and 150 learners achiegeth and40.5% recall respectively.

4.1 Languages other than English: supplement to Figure 3D

To visualize the typological relationships of different languages, we consider the pattern spec-
trum representation, defined as follows. We first list all the significant patterns extracted from the
data during the application of thep10s algorithm. Each of these consists of elements that be-
long to one of three classes: patterns (P), equivalence classes (E), and original words or terminals
(T) of the tree representation. We next compute the proportions of patterns that are described
in terms of these three classes as TT, TE, TP, and so on, as shown in Figure S8. Comparing
the spectra of the six languages, we derive a dendrogram representation of the relative syntactic
proximity between them. This is shown in Figure 3D in the main paper. It corresponds well to

the expected pattern of typological relationships suggested by classical linguistic ar@lysis (
5 Language: psycholinguistics
5.1 Learning “nonadjacent dependencies”

The two languages used id)( L1 and L2, are defined in Table S&el, vot, dak, toodare
all nonsense words that form three-element sequences, in whose middle slot, den&ted by
subset of between 2 and 24 other nonsense words may appearabdsterms, X thus stands

for an equivalence class with 2-24 elements. We replicated fmeez study by trainingblos

14
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Figure S7: Four simple patterns extracted from the ATIS natural language corpus. Some of the
sentences that can be described/generated by patterns #1690, #1731, #1855 and #1531 are:
would like to book the first class; | plan to make a round trip; what kind of food would

be served ; how many flights does continental have . None of these sentences appear in the
training data, illustrating the ability ofD10S to generalize. The numbers in parentheses denote
the generalization factors of the patterns and their components (e.g., pattern #1690 generates
90% new strings, while pattern #1731 generdt6% new strings).
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——Chinese
——English
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—— Spanish
—— Swedish

Figure S8: A comparison (on a logarithmic scale) of pattern spectra obtained from six languages
(Chinese, English, Danish, French, Spanish and Swedish). The extraction of patterns was based
on the same corpus, the Bible (66 books containing 33K sentences), in its six versions, avail-
able online at http://www.umiacs.umd.edu/ resnik/parallel/bible.html. It can be seen that natural
languages have a relatively large percentage of patterns that fall into TT and TTT categories
(known as collocations).

L1 L2

Pl =pel — X —rud Pl = pel—X — jic
P2 = vot — X — jic P1 = vot — X — tood
P3 = dak — X —tood P1 = dak —X —rud

X(2)={wadim, kicey}

X(6)={wadim, kicey, puser, fengle, coomo, ldga

X(12)={wadim, kicey, puser, fengle, coomo, loga, gople, taspu, hiftam, benez, vamey}skiger
X(24)={wadim, kicey, puser, fengle, coomo, loga, gople, taspu, hiftam, benez, vamey, skiger,
benez, gensim, feenam, laeljeen, chila, roosa, plizet, balip, malsig, suleb, nilbo} wiffle

Table S8: Definition of the L1 and L2 languages.
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on 432 strings from L1, using 30 learners and various sizés.derformance was evaluated in

the same manner as in thé&f@ez study. The test set consisted of 12 strings: 6 from L1 (which
should be accepted) and 6 from L2 (which should be rejected). The results are as follows: when
Lissetto 3 = 0.6, « = 0.01), and|X| is set to2, 6, 12, 24 elementsaDIOS accepts all the
sentences of L1 while rejectingt + 27%, 50 + 17%, 86 + 14%, 82 + 17% sentences of L2,
respectively. Performance level increases monotonically {ith in accordance with human
data. Training withl, = 4 yielded100% acceptance rate for L1 and0% rejection rate for L2,
irrespectively of| X|, indicating a perfect ability of the algorithm to capture the non-adjacent

dependency rule with the proper choice of parameters.

5.2 Grammaticality judgments

We have assessed the ability of theios model to deal with novel inputdy introducing an

input module(described below). After training on transcribed speech directed at children (a
corpus of 300,000 sentences witl3 million words, taken from the CHILDES collectio®)),

the input module was subjected to grammaticality judgment tests, in the form of multiple choice
questions. The algorithfridentified 3400 patterns and 3200 equivalence classes. The input
module was used to process novel sentences by forming their distributed representations in terms
of activities of existing patterns (a similar approach had been proposed for novel object and
scene representation in visioB)). These values, which supported grammaticality judgment,
were computed by propagating activation from bottom (the terminals) to top (the patterns). The

initial activitiesa; of the terminals:; were calculated given a stimulus, . . ., s, as follows:

_ AN
= {P(S“ 18 B Bley) } ©

where P(s;, e;) is the joint probability ofs, ande; appearing in the same equivalence class,

2Including sentences with novel vocabulary items that are not fully represented by the trained system.
3An earlier version ohbios, which did not use the full conditional probability matrix of eq. 1.

17



and P(s;) and P(e;) are the probabilities of; ande; appearing in any equivalence class. For
an equivalence class, the value propagated upward was the strongest non-zero activation of its
members; for a pattern, it was the average weight of the children nodes, on the condition that all
the children were activated by adjacent inputs. Activity propagation continued until it reached
the top nodes of the pattern lattice. When this algorithm encounters a novel word, all the mem-
bers of the terminal equivalence class contribute a value-01.01, which is then propagated
upward as before. This enables the model to make an educated guess as to the meaning of the
unfamiliar word, by considering the patterns that become active. Figure S9 shows the activation
of a pattern (#185) by a sentence that contains a word in a novel con&x}, @s well as other
words never before encountered in any contekida, Paul).

We assessed this approach by subjecting a single instana@ ©s$ to five different gram-
maticality judgment tests reported in the literatureX0; see Figure S10 (left). The results of
one such test, used in English as Second Language (ESL) classes, are described below. This
test has been administered i®@borg (Sweden) to more than, 000 upper secondary levels
students (that is, children who typically had 9 years of school, but only 6-7 years of English).
The test consists of00 three-choice questions (Table S9), withs being the average score
for the population mentioned. For each of the three choices in a given question, our algorithm
provided a grammaticality score. The choice with the highest score was declared the winner; if
two choices received the same top score, the answer was “don’t know”. The algorithm’s perfor-
mance is plotted in Figure S10 (right) against the size of the CHILDES training set. Over the
course of training, the proportion of questions that received a definite answer grew (red bars),
while the proportion of correct answers remained ara&6yd (blue curve); compare this to the

45% precision with20% recall achieved by a straightforward bi-gram benchnfark.

4Chance performance in this test3i$%. We note that the corpus used here was too small to train-gram
model forn > 2; thus, our algorithm effectively overcomes the problem of sparse data by putting the available data
to a better use.
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Figure S9: An active pattern responding to the partially novel inputia and Paul have a
new car. Leaf activation, which is proportional to the mutual information between input words

and various members of the equivalence classes, is propagated upward by taking the average at
each junction.
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sentence choice 1| choice 2| choice 3
The pilot__look worried. isn’t doesn’t | don't
She asked me at once. come | tocome| coming
The tickets have been paid for, so yownot worry.| may dare need
We've gone slightly  course. of off from

Table S9: Sample questions from a multiple-choice test used in ESL instructiodt@b@g,
Sweden. A score< 50% in this 100-question test (available online) is considered pre-
intermediate50 — 70% intermediate, and a score 70% advanced.

0.7 5 067

ADIOS bi-gram 81 oo

benchmark #item |correct answered| correct answered 05

I answered

Linebarger, Schwartz o, () 0 0
and Saffran, 1983 25 65% 65% 42% 92% 044  —a— precision

L , Giles and
Fi‘:]";g%%() lesand 70 59% 73% 38% 63% 03]

Allen and Seidenberg, 10 83% 60% 40% 50%
1999 0.24
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Figure S10:Left: the results of several grammaticality tests reported in the literaRight: a
summary of the performance abios in the Giteborg ESL test, plotted against the number of
sentences (paths) scanned during training (red bars: recall; blue rectangles: precision).

6 Bioinformatics
6.1 Classification of enzymes classes: supplement to Figure 4A

We evaluated the ability of root patterns foundAxyios to support functional classification of
proteins (enzymes). The function of an enzyme is specified by an Enzyme Commission (EC)
name. The name corresponds to an EC number, which is of the form: n1:n2:n3:n4. In this ex-
periment, we concentrated on the oxidoreductases superfamily (EC 1.x.x.x). Protein sequences
and their EC number annotations were extracted from the SwissProt database Release 40.0; se-
guences with double annotations were removed. FABtOS was loaded with all the 6751

proteins of the oxidoreductases superfamily. Each path in the initial graph thus corresponded to

20



a sequence of amino acids (20 symbols).

The training stage consisted of the two-stage action described in section 2.2. In the first
stage { = 0.9, « = 0.01), the algorithm identified 0, 200 motifs (words). In the second
stage { = 1.0, « = 0.01) after removing those letters that were not associated with one of
the identified motifs, it extracted additional 938 patterns. Classification was tested on level 2
(EC 1.x, 16 classes) and on level 3 (EC 1.x.x, 54 classes). Proteins were represented as vec-
tors of ADIOS root patterns. A linear SVM classifier (SVM-Light package, available online at
http://svmlight.joachims.org/) was trained on each class separately, taking the proteins of the
class as positive examples, and the rest as negative examples. 75% of the examples were used
for training and the remainder for testing. Performance was measured as Q = (TP + TN)/(TP +
TN + FP + FN), where TP, TN, FP and FN are, respectively, the number of true positive, true
negative, false positive, and false negative outcomes. Table S10 presents the performance of
the ADI0S algorithm on level 2 alongside the performance of the SVM-PRot sysiédjn Ta-
ble S11 presents the performance on level 3. A s performance matched the performance
of the SVM-PRot system, even though the latter uses a representation composed of features
such as hydrophobicity, normalized Van der Waals volume, polarity, polarizability, charge, sur-
face tension, secondary structure and solvent accessibility, while we use solely the structure
found by our algorithm in the amino acid sequence data. The average recall/precision on level 2
was71 £ 13% and90 £ 9%, respectively, while recall/precision on level 3 wds+ 26% and
93 + 23%, indicating that theanDI0S representation can accurately discriminate the enzyme’s

low-level functionality.

6.2 A compression ratio analysis: supplement to Figure 4B,C

Our algorithm also provides a useful tool for identifying Open Reading Frames (ORF) and cod-
ing regions in DNA sequences, based on comparing the description lengthAifithe repre-

sentation before and after learning. The description length ofthes representation consists
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Class| TP | FN | FP | TN | ADIOS Q | recall | precision | SVM-Prot Q
1.1 33389 | 64 | 1201| 0.91 0.79 | 0.84 0.92
1.2 110| 49 | 26 | 1502| 0.96 0.69 | 0.81 0.99
1.3 62 |36 |14 | 968 | 0.95 0.63 | 0.82 0.98
1.4 33 |23 |9 |[556 |0.95 0.59 | 0.79 0.99
1.5 20 |19 |8 | 384 [0.94 0.51 | 0.71 0.97
1.6 198 | 23 | 25 | 1441 | 0.97 0.90 | 0.89 0.99
1.7 23 |13 |2 |365 | 0.96 0.64 | 0.92 0.99
1.8 51 |21 |3 |717 | 0.97 0.71 | 0.94 0.99
1.9 117121 |4 | 1376| 0.98 0.85 | 0.97 0.96
1.10 {16 (13 |0 | 292 |0.96 0.55 | 1.00 0.96
1.11 |61 |16 |3 | 772 |0.98 0.79 | 0.95 0.98
1.13 |16 |15 |2 |315 |0.95 0.52 | 0.89 0.95
1.14 |106| 41 | 13 | 1462| 0.97 0.72 | 0.89 0.95
1.15 |54 (4 |0 |582 |0.99 0.93 | 1.00 0.99
1.17 |22 |6 |0 |285 |0.98 0.79 | 1.00 0.97
1.18 |32 |10 |1 |424 |0.98 0.76 | 0.97 0.98

Table S10: The performance of taeios algorithm versus the SVM-Prot system on level 2.

of two parts: the graph (vertices and paths) and the identified patternsconty@ession ratio

of the description length can be quantified by evaluating the decrease in the physical memory it
occupies (in bits). We have calculated the compression at several points along the curves of the
ATIS-CFG recall/precision graph (Figure 3B in the main paper). Figure S11 shows the corre-
lation between the recall/precision levels (ordinate) and the compression rate (abscissa). It can
be seen thatDIOs recall level strongly depends on (increases with) the compression level, but
the precision level only weakly depends on the latter. The compression ratio characteristic is
particularly useful when comparing the performancenfos on different data for which the

target “grammars” are not available. The ORF problem is a typical example of such an analysis.

7 Computational Complexity

We conducted several experiments based on the TA1 grammar to estimate the computational

complexity of ADIOS. We found four variables that have major effects: the total number of
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class TP | FN | FP | TN Q Recall | Precision
1.1.1 331 | 67 | 48 | 1241 | 0.93| 0.83 0.87
1.1.3 4 4 0 80 0.95| 0.50 1.00
1199 | 6 8 0 147 | 0.95]| 0.43 1.00
1.10.2 | 8 8 1 166 | 0.95| 0.50 0.89
1.103 | 6 3 0 95 0.97 | 0.67 1.00
1.10.99| 3 0 0 30 1.00| 1.00 1.00
1111 |62 |15 | 4 771 | 0.98| 0.81 0.94
1.12.99| 6 0 0 65 1.00 | 1.00 1.00
1.13.11115 |12 | O 277 | 0.96 | 0.56 1.00
1.13.12] 0 3 0 30 0.91| 0.00 0.00
1.14.11| 8 3 0 117 | 0.98]| 0.73 1.00
1.14.12| 4 1 0 55 0.98| 0.80 1.00
1.14.13| 14 |11 |1 251 | 0.96 | 0.56 0.93
1.14.14| 48 | 9 0 572 | 0.99| 0.84 1.00
1.14.15| 8 1 0 95 0.99| 0.89 1.00
1.14.16| 6 0 0 67 1.00 | 1.00 1.00
1.14.18| 1 2 0 35 0.95]| 0.33 1.00
1.14.19| 6 0 0 65 1.00| 1.00 1.00
1.1499| 15 | 3 0 180 | 0.98| 0.83 1.00
1.151 |53 |5 2 580 | 0.99| 0.91 0.96
1.16.1 | 2 3 0 52 0.95| 0.40 1.00
1174 |21 |7 1 281 | 0.97| 0.75 0.95
1181 | 7 4 0 117 | 0.97| 0.64 1.00
1186 |25 |5 0 307 | 0.99| 0.83 1.00
1.2.1 95 | 29 | 4 1236 | 0.98 | 0.77 0.96
1.2.3 3 0 0 32 1.00 | 1.00 1.00
1.2.4 10 | 6 0 165 | 0.97| 0.63 1.00
1.2.7 2 6 0 82 0.93| 0.25 1.00
1299 | 2 5 0 72 0.94| 0.29 1.00
1213 | 3 0 0 32 1.00 | 1.00 1.00
1.3.1 29 | 8 1 369 | 0.98| 0.78 0.97
1.3.3 23 |11 |0 347 | 0.97| 0.68 1.00
1.35 4 0 0 45 1.00| 1.00 1.00
1.3.7 0 3 0 37 0.93| 0.00 0.00
1399 |13 |5 1 181 | 0.97| 0.72 0.93
1.4.1 15 |5 0 207 | 0.98| 0.75 1.00
1.4.3 10 |12 | O 222 | 0.95| 0.45 1.00
1.4.4 2 1 0 35 0.97 | 0.67 1.00
1499 | 6 1 0 77 0.99| 0.86 1.00
15.1 18 |12 |1 299 | 0.96 | 0.60 0.95
153 0 3 0 37 0.93| 0.00 0.00
1599 |2 1 0 37 0.98 | 0.67 1.00
1.6.1 4 1 0 52 0.98 | 0.80 1.00
1.6.2 5 0 0 50 1.00| 1.00 1.00
1.6.5 162 | 5 8 1512 | 0.99 | 0.97 0.95
1699 |24 |19 |8 429 | 0.94 | 0.56 0.75

Table S11: The performance of taeios algorithm on level 3.
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class | TP |[FN |FP | TN | Q Recall | Precision
171 |10 |4 |0 |2145 |097|0.71 |1.00
172 |5 0O [0 |55 1.00| 1.00 | 1.00
1.7.3 |3 2 |0 |50 0.96| 0.60 | 1.00
1.7.99| 5 5 |0 |107 |0.96|0.50 |1.00
181 |30 |4 |0 |345 [0.99|/0.88 |1.00
184 |30 |4 |0 |342 [0.99|0.88 |1.00
1.9.3 | 110|28 |6 |1374|/0.98|0.80 | 0.95
1.97.1| 3 0O |0 |32 1.00| 1.00 | 1.00

Table S11 (continued): The performance of Amos algorithm on level 3.

Enzyme Class Pattern

111 WSG{VNVAGV, RT}

1.1.1 GKVIKCKAA VL

1.1.1 ALVTG {AGK, ST, AAQ, AS, SR, SK, TS, NK GIG
1.1.1 ANQNGAIWKLDLG LDA

1.1.1 AAY {GEV, SSVL, STV, SSV {MN,AQA}
111 LTNKNV IFVAGLGGIGLDTS

121 IF IDG EH GTTGLQI

1.2.1 VSV IDNLVKGA GQAIQN

1.4.3 TG {FQ,GI} YGL

1.6.5 TD {RVL, LKSLI } AY

1.6.5 IAL {TSL, ME, PT} HT

1.8.1 FT{EL, VLPM, HL} YP

1.8.4 EVR {SAHG,SNA,KNA,RAA,SKL,RFA,KYD} DS
1.8.4 {NR,TT} QG

1.11.1 VKFHWKPTCGVK {SM, CL}

1.11.1 {QE,QP WWPAD

1.11.1 {AlLAP} KFPDFIHTQKR

1.11.1 FDHER IPERVVHARG

1.11.1 GIPASYR HM GFGSHT

1.11.1 VS LDKARRLLWPIKQKYG

1.15.1 FW {VVN,LVN,MP } WD

1.18.6 {IPL,CIG} VHGGQGC MFV

Table S12: Some of the specifibiOs patterns appear in specific Enzyme Classes.
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Figure S11: Correlation between the recall/precision levels (ordinate, blue and red respectively),
versus compression rate (abscissa), obtained for the ATIS-CFG problem (Figure 3B in the main

paper).
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words in a given corpus, the average sentence length, the size of the initial lexicon and the value
of the context window parameter L. For each of these, we conducted an experiment that exclu-
sively manipulated the variable in question, while measuring the time until convergence. The
results, plotted in Figure S12, reveal the following dependencies: the training time grows linearly
with the size of the corpus, and logarithmically with the average sentence length. It shows in-
verse power dependence both on respect the lexicon size and on the value of L. Overall, the com-
putational complexity oADIOS according to this empirical estimateals(nlog )/ (LANV)),

wheren is the total number of words in the corpuds the average sentence lengthis the

value of context window parameter, andis the lexicon size. The conclusion from this exper-
iment is thatADIOS is easily scalable to larger corpora; this is consistent with the actual tests

described in the main paper.

Conclusions

The massive, largely unsupervised, effortless and fast feat of learning that is the acquisition of
language by children has long been a daunting challenge for cognitive sciebfisis3(and
for natural language engineets4-16. Because a completely bias-free unsupervised learning
is impossible {2, 17, 18, the real issue in language acquisition is to determine the constraints
that a model of “grammar induction” should impose — and to characterize those constraints
that infants acquiring language do in fact impose — on the learning procedure. In our approach,
the constraints are defined algorithmically, in the form of a method for detecting, in sequential
symbolic data, of units (patterns and equivalence classes) that are hierarchically structured and
are supported by context-sensitive statistical evidence.

In linguistics, our method should be of interest to researchers of various theoretical persua-
sions who construe grammars as containing — in addition to general and lexicdl&&)(

rules — “inventories” of units of varying kinds and sizexl(22 such as: idioms and semi-
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productive forms 23, 29, prefabricated expression25, 29, “syntactic nuts” 27), frequent
collocations 28), multiword expressions20, 30, and constructions3(—34. In addition, the
growing collection of patterns revealed by our algorithm in various corpora should complement
both syntax-related resources such as the Penn TreeB8nknd semantics-oriented resources

such as the WordNeB6), the PhraseNeB(), and the Berkeley FrameNe&§, 39.
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