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1 Algorithm details

Consider a corpus ofm sentences (sequences) of variable length, each expressed in terms of

a lexicon of finite size N. The sentences in the corpus correspond tom different paths in a

pseudograph (a non-simple graph in which both loops and multiple edges are permitted) whose

vertices are the unique lexicon entries, augmented by two special symbols,begin andend. Each

of the N nodes has a number of incoming paths that is equal to the number of outgoing paths.

Figure S1 illustrates the type of structure that we seek, namely, the bundling of paths, signifying

a relatively high probability associated with a sub-structure that can be identified as a pattern.

To extract it from the data, two probability functions are defined over the graph for any given

search pathS = (e1 → e2 → ... → ek) = (e1; ek).1 The first one,PR(ei; ej), is the right-moving

ratio of fan-through flux of paths atej to fan-in flux of paths atej−1, starting atei and moving

along the sub-pathei → ei+1 → ei+2... → ej−1:

PR(ei; ej) = p(ej|eiei+1ei+2...ej−1) =
l(ei; ej)

l(ei; ej−1)
(1)

wherel(ei; ej) is the number of occurrences of sub-paths(ei; ej) in the graph. Proceeding in the

opposite direction, from the right end of the path to the left, we define the left-going probability

1In general the notation(ei; ej), j > i corresponds to a rightward sub-path ofS, starting withei and ending
with ej . A leftward sub-path ofS, starting withej and ending withei is denoted by(ej ; ei), i < j.
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Figure S1: Comparison between a structured graph, of the type expected to appear in our prob-
lem (left), and one of random connectivity (right).

functionPL:

PL(ej; ei) = p(ei|ei+1ei+2...ej−1ej) =
l(ej; ei)

l(ej; ei+1)
(2)

and note that

PR(ei; ei) = PL(ei; ei) =
l(ei)∑N

x=0 l(ex)
(3)

where N is the total number of vertices in the graph. Clearly, both functions vary between 0 and 1

and are specific to the path in question. The MEX algorithm is defined in terms of these functions

and their ratios. In Figure S2,PR first increases because some other paths join the search path

to form a coherent bundle, then decreases ate4, because many paths leave it ate4. To quantify

this decline ofPR, which we interpret as an indication of the end of the candidate pattern, we

define adecrease ratio, DR(ei; ej), whose value atej is DR(ei; ej) = PR(ei; ej)/PR(ei; ej−1),

and require that it be smaller than a presetcutoff parameterη < 1 (in the present example,

DR(e1, e5) = PR(e1, e5)/PR(e1, e4) < 1
3
).
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In a similar manner, the value ofPL increases leftward; the pointe2 at which it first shows

a decreaseDL(ej; ei) = PL(ej; ei)/PL(ej+1; ei) < η can be interpreted as the starting point of

the candidate pattern. Large values ofDL andDR signal a divergence of the paths that con-

stitute the bundle, thus making a pattern-candidate. Since the relevant probabilities (PR(ei; ej)

andPL(ej; ei)) are determined by finite and possibly small numbers of paths (l(ei; ej) out of

l(ei; ej−1)), we face the problem of small-sample statistics. We find it useful therefore to supple-

ment conditions such asDR(ei; ej) < η by a significance test based on binomial probabilities:

B(ei; ej) =
l(ei;ej)∑

x=0

Binom(l(ei; ej−1), x, ηPR(ei; ej−1)) < α; α � 1, (4)

We calculate bothPL andPR from all the possible starting points (such ase1 ande4 in the ex-

ample of Figure S2), traversing each path leftward and rightward, correspondingly. This defines

a matrix of the form

Mij(S) =


PR(ei; ej) if i > j
PL(ej; ei) if i < j
P (ei) if i = j

(5)

One can writeM(S) in its explicit form, namely, as an instantiation of a variable-order Markov

model up to orderk, which is the length of the search-path:

M
.
=



p(e1) p(e1|e2) p(e1|e2e3) . . . p(e1|e2e3 . . . ek)
p(e2|e1) p(e2) p(e2|e3) . . . p(e2|e3e4 . . . ek)

p(e3|e1e2) p(e3|e2) p(e3) . . . p(e3|e4e5 . . . ek)
...

...
...

...
p(ek|e1e2 . . . ek−1) p(ek|e2e3 . . . ek−1) p(ek|e3e4 . . . ek−1) . . . p(ek)


Given the matrixM(S), we identify all the significantDR(ea; eb) andDL(ed; ec) (1 ≤ a, b, c, d ≤

k) and their coinciding pairs (DR(ea; eb), DL(ec; ed)), requiring thata < d < b < c. The pair

with the most significant scores (on both sides,B(ea; eb) andB(ed; ec)) is declared as the leading

pattern (ed+1; eb−1).
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Figure S2: The definition of a bundle that serves as a candidate pattern, whose beginning and
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in these probabilities after the maxima, signifying the divergence of paths at these points.
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Figure S3: An instance of a7 × 7 M matrix based on the black search path in Figure S2. The
blue and red arrows represent all the significant segmentsDR(ea; eb) andDL(ed; ec) (α < 0.01),
respectively. The values of the matrix elements appear in the upper right corners of the cells.
The most significant pair of segments (B(ea; eb), B(ed; ec)) for whicha < d < b < c is marked
the leading pattern(in this example the leading pattern ise2 → e3 → e4).
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Figure S4: Two instances of theM matrix computed from two different corpora: the SwissProt
database sequence of amino acids (left), and the text ofAlice in the Wonderlandconsidered as
a sequence of letters (right). Significant changes in thePL andPR values have been colored
on a yellow/red scale and a cobalt/blue scale (increase and decrease, respectively); green is the
neutral color. The protein O17433 is the search path used to construct the matrix on the left; the
first paragraph ofAlice is the search path used to create the matrix on the right. For visualization
purposes, only the first 300 elements of the matrices are shown.
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2 Learning a simple Context-Free Grammar

2.1 Replicating the study of Adriaans and Vervoort (2002): EMILE 4.1

We replicated one of the experiments of (1) (“A 2000 Sentences Sample”, p.8). The aim of

the original experiment was to reconstruct a specific context-free grammar (29 terminals and 7

rules) from a corpus of 2000 sentences using the EMILE 4.1 algorithm. The results of applying

theADIOS algorithm to a 2000-sentence corpus randomly generated from the given context-free

grammar are shown in Table S1. The algorithm (used in its default Mode A,η = 0.6, α = 0.01,

recursion depth set to 15) yielded 28 patterns and 9 equivalence classes, and achieved100%

precision and99% recall. In comparison, the EMILE algorithm, as reported in (1), induced

3000-4000 rules (the recall/precision performance of the EMILE algorithm was not stated). Ta-

ble S1 shows a comparison between the induced grammar and its target grammar. The upper

part of the table contains the extracted equivalence classes and their target counterparts, demon-

strating the ability ofADIOS to identify most of the target classes (except one, E43). The lower

part of the table shows thatADIOS distills a set of rules that is larger than the original one (but

equivalent to it).

2.2 Inferring the TA1 grammar: supplement to Figure 3A

Tables S2 to S5 show the performance of anADIOS model trained on extremely small corpora

(200 sentences) generated by the TA1 artificial grammar (listed in Table S6). The tables present

the recall-precision values (with their standard deviations across 30 different trails) in four dif-

ferent running modes:Table S2, Mode A (context free);Table S3, mode B (context-sensitive

mode);Table S4, “semantically supervised” mode, in which the equivalence classes of the target

grammar are made available to the learner ahead of time (training in Mode A);Table S5, boot-

strap mode, which starts from a letter-level training corpus in which all spaces between words

are omitted (training in Mode A). In the first three experiments, the context-window length was
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Table S1: A comparison between the target grammar of Adriaans and Vervoort (left) and the
grammar induced by a singleADIOS instance (right). Root patterns appear in bold.

target grammar inferred grammar
[NPa] ⇒ John| Mary | the man| the child E35⇒ child | man

P34⇒ the E35
E37⇒ John| Mary | P34

[P] ⇒ with | near| in | from E54⇒ with | near| in | from
[Vi] ⇒ appears| is | seems| looks E39⇒ appears| is | seems| looks
[Vs] ⇒ thinks| hopes| tells | says E51⇒ thinks| hopes| tells | says
[Vt] ⇒ knows| likes | misses| sees E46⇒ knows| likes | misses| sees
[ADV] ⇒ large| small | ugly | beautiful E49⇒ large| small | ugly | beautiful
[NPp] ⇒ the car| the city| the house| the shop E43⇒ house| shop

[S] ⇒ [NP] [Vi] [ADV] | [NPa] [V Pa] | [NPa] [Vs] that [S] E69⇒ P47| P59| P62| P66| P67
[NP] ⇒ [NPa] | [NPp] P40⇒ the city
[VPa] ⇒ [Vt] [NP] | [Vt] [NP] [P] [NPp] P41⇒ the car

P36⇒ John likes E37
P42⇒ the E43 E39
P44⇒ the house
P45⇒ E37 E46
P47⇒ P45 E37
P48⇒ E37 E39 E49
P50⇒ E37 E51 that
P52⇒ P47 in the shop
P53⇒ E54 P44
P55⇒ P47 near P40
P56⇒ E54 P41
P57⇒ E54 P40
P58⇒ P50 P50 P45 the shop
P59⇒ P45 the shop
P60⇒ P41 E39 E49
P61⇒ P42 E49
P62⇒ P45 P40
P63⇒ P50 P50 P48
P64⇒ E54 the shop
P65⇒ P50 P62 P64
P66⇒ P45 P44
P67⇒ P45 P41
P68⇒ E69 P53
P70⇒ P38 E49
P71⇒ E69 P57
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Table S2: Mode A (Context-Free).

corpus size L recall precision F1
200 9 0.3± 0.2 0.9± 0.1 0.45
200 8 0.4± 0.2 0.93± 0.09 0.59
200 7 0.6± 0.1 0.9± 0.1 0.71
200 6 0.7± 0.1 0.9± 0.2 0.78
200 5 0.78± 0.08 0.8± 0.2 0.80
200 4 0.83± 0.06 0.8± 0.2 0.81
200 3 0.84± 0.06 0.6± 0.2 0.71

Table S3: Mode B (Context-Sensitive).

corpus size L recall precision F1
200 9 0.5± 0.2 0.8± 0.1 0.65
200 8 0.6± 0.1 0.78± 0.09 0.66
200 7 0.61± 0.07 0.9± 0.2 0.72
200 6 0.6± 0.1 0.8± 0.2 0.68
200 5 0.61± 0.09 0.8± 0.1 0.69
200 4 0.69± 0.05 0.9± 0.1 0.79
200 3 0.68± 0.06 0.98± 0.04 0.80

Table S4: Mode A, “semantically supervised”.

corpus size L recall precision F1
200 8 0.86± 0.06 0.7± 0.2 0.80
200 7 0.89± 0.04 0.8± 0.2 0.84
200 6 0.90± 0.04 0.8± 0.2 0.85
200 5 0.90± 0.03 0.8± 0.2 0.83
200 4 0.92± 0.03 0.8± 0.2 0.83
200 3 0.92± 0.03 0.9± 0.2 0.89

Table S5: Mode A, “no spaces”.

corpus size L recall precision F1
200 3 0.01± 0.01 0.91± 0.09 0.01
500 3 0.07± 0.04 0.89± 0.08 0.12
1000 3 0.13± 0.06 0.8± 0.1 0.23
2500 3 0.30± 0.07 0.79± 0.09 0.43
5000 3 0.39± 0.08 0.85± 0.1 0.53
10000 3 0.5± 0.1 0.86± 0.09 0.65
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Table S6: The TA1 grammar, consisting of 50 terminals and 28 rules.

σ ⇒ s1| s2| s3| s4
s1 ⇒ prec np2 vp ptag
s2 ⇒ frec np2 vp ftag
s3 ⇒ frec iv6 iv55
s4 ⇒ that np2 iv5 iv6 iv4 np2
np ⇒ art noun| propn
np2 ⇒ thenoun| propn
propn ⇒ p vp2| p
pp ⇒ p andp vp6| p pandp vp6
vp ⇒ iv andcom
vp2 ⇒ whotv np
com ⇒ np iv2
rec ⇒ p vp5that rec| p vp5that
frec ⇒ pf vp5 that rec
ftag ⇒ , doesn’t she ?
prec ⇒ pp that rec
ptag ⇒ , don’t they ?
iv5 ⇒ is iv5-ex
iv55 ⇒ is iv55-ex
iv6 ⇒ to iv6-ex
art ⇒ the| a
noun ⇒ cat | dog| horse| cow| rabbit | bird
p ⇒ Joe| Beth| Jim | Cindy| Pam| George
pf ⇒ Beth| Cindy| Pam
vp5 ⇒ believes| thinks
vp6 ⇒ believe| think
iv ⇒ meows| barks
iv2 ⇒ laughs| jumps| flies
iv5-ex ⇒ easy| tough| eager
iv55-ex ⇒ easy| tough
iv6-ex ⇒ please| read
iv4 ⇒ annoys| worries| disturbs| bothers
tv ⇒ scolds| loves| adores| worships
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varied while the other parameters were kept fixed (η = 0.6, α = 0.01, corpus size 200). In the

bootstrap mode, the algorithm must first segment the sequence of letters into words (applying

only the MEX procedure without extracting equivalence classes), and only then use the identified

words to extract the grammar. This two-stage process requires a larger corpus to attain a compa-

rable level of performance (up to10, 000 sentences in this example). Thus, in the last experiment

L was kept fixed at 3,ω was lowered to0.4, and the corpus size ranged from200 to 10, 000 sen-

tences. Performance was assessed by the F1 measure, defined as2·recall·precision/(recall +

precision). The best recall/precision combinations appear in bold and are plotted in Figure 3A

in the main paper. It can be seen that both context free mode and context sensitive mode reach

similar F1 levels; however, while the context free mode gets higher levels of recall (83% versus

68%) the context sensitive mode gets higher level of precision (98% versus 80%). When seman-

tic information is available to the learner ahead of time, it gives rise to a significant improvement

in the learning performance (F1=0.89 versus 0.81), which parallels the documented importance

of embodiment cues in language acquisition by children. Figure S5 demonstrates the ability of

ADIOS to deal with the kind of syntactic phenomena that can be produced by the TA1 grammar

(e.g. “tough movement”).

3 Learning a complex Context-Free Grammar

3.1 Inferring the ATIS-CFG: supplement to Figure 3B

Table S7 illustrates the recall and precision performance for learning the 4592-rule ATIS Context

Free Grammar (2), using different parameter values (L ={3, 4, 5, 6}; 30 or 150 learners; corpus

size between 10,000 and 120,000 sentences). Figure S6 presents a schematic illustration of the

coverage of the target language by multiple learners, for various settings of L.
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Figure S5: An illustration of the ability ofADIOS to deal with certain structure-dependent syntac-
tic phenomena. In this example, when trained on sentences exemplifying the so-called “tough
movement”,ADIOS forms patterns that represent the correct phrases (. . . is easy to read, is
easy to please, is eager to read, is eager to please, to read is easy and to please is
easy), but does not over-generalize to the incorrect ones (*to read is eager or *to please is
eager).

4 Generativity of the learned grammar in natural language:
supplement to Figure 3C

Because the target grammar of a natural language is inaccessible, precision must be evaluated

by human subjects (referees), while recall can be evaluated by the same method described in

the sectionLanguage: computational grammar inductionin the main paper. In the present

experiment, theADIOS algorithm was trained on the ATIS-N natural language corpus. This

corpus contains13, 043 sentences of natural speech, in the Air Travel Information System (ATIS)

domain. TheADIOS algorithm was trained on12, 700 sentences (Ctraining); the remaining 343

sentences were used to evaluate recall (Ctarget). Two groups of learners (30, 150) were trained

(η = 0.6, α = 0.01, L = 5) on different, order-permuted, versions of the corpus (several

representative acquired patterns appear in Figure S7 along with theirgeneralization factors).

After training, each learner generated 100 sentences, which were then placed together into a

single corpus (theClearners test-corpus). Precision of theADIOS representation (mean± std
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Figure S6: High values of L bring the learners into a low-productivity region where precision
is high, but the coverage of the target language is low. For low values of L, the learners tend to
over-generalize and thus acquire an inaccurate language that, however, does cover most of the
target. The proper balance is achieved by setting L to an intermediate value, so that the learners
cover a large portion of the target language, yet remain within the language boundaries.

Table S7: ATIS-CFG recall and precision.

corpus size No. of learners L η recall precision F1
10000 30 3 0.6 0.380 0.623 0.472
10000 30 4 0.6 0.308 0.657 0.420
10000 30 5 0.6 0.180 0.920 0.301
40000 30 3 0.6 0.643 0.568 0.603
40000 30 4 0.6 0.660 0.596 0.627
40000 30 5 0.6 0.456 0.780 0.576
120000 30 3 0.6 0.910 0.538 0.676
120000 30 4 0.6 0.750 0.580 0.654
120000 30 5 0.6 0.747 0.640 0.689
120000 30 6 0.6 0.465 0.818 0.593
120000 150 3 0.6 1.000 0.538 0.700
120000 150 4 0.6 1.000 0.580 0.734
120000 150 5 0.6 1.000 0.640 0.780
120000 150 6 0.6 0.600 0.820 0.693
120000 150 7 0.6 0.230 0.970 0.372
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dev) was estimated by having eight human subjects judge the acceptability of 20 sentences

taken fromClearners and of 20 sentences taken from the original ATIS-N corpus (Ctraining). The

subjects had no indication which sentence belonged to which corpus; the sentences appeared in

a random order and each subject judged a different set of sentences. Altogether, 320 sentences

were evaluated. The original ATIS-N corpus was scored at70±20% precision while theADIOS-

generated sentences attained67± 7% precision. Recall was calculated using theCtarget corpus.

Sets of 30 and 150 learners achieved32% and40.5% recall respectively.

4.1 Languages other than English: supplement to Figure 3D

To visualize the typological relationships of different languages, we consider the pattern spec-

trum representation, defined as follows. We first list all the significant patterns extracted from the

data during the application of theADIOS algorithm. Each of these consists of elements that be-

long to one of three classes: patterns (P), equivalence classes (E), and original words or terminals

(T) of the tree representation. We next compute the proportions of patterns that are described

in terms of these three classes as TT, TE, TP, and so on, as shown in Figure S8. Comparing

the spectra of the six languages, we derive a dendrogram representation of the relative syntactic

proximity between them. This is shown in Figure 3D in the main paper. It corresponds well to

the expected pattern of typological relationships suggested by classical linguistic analysis (3).

5 Language: psycholinguistics

5.1 Learning “nonadjacent dependencies”

The two languages used in (4), L1 and L2, are defined in Table S8.Pel, vot, dak, toodare

all nonsense words that form three-element sequences, in whose middle slot, denoted byX, a

subset of between 2 and 24 other nonsense words may appear. In theADIOS terms,X thus stands

for an equivalence class with 2-24 elements. We replicated the Gómez study by trainingADIOS

14
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Figure S7: Four simple patterns extracted from the ATIS natural language corpus. Some of the
sentences that can be described/generated by patterns #1690, #1731, #1855 and #1531 are:I
would like to book the first class; I plan to make a round trip; what kind of food would
be served ; how many flights does continental have . None of these sentences appear in the
training data, illustrating the ability ofADIOS to generalize. The numbers in parentheses denote
the generalization factors of the patterns and their components (e.g., pattern #1690 generates
90% new strings, while pattern #1731 generates66% new strings).
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on the same corpus, the Bible (66 books containing 33K sentences), in its six versions, avail-
able online at http://www.umiacs.umd.edu/ resnik/parallel/bible.html. It can be seen that natural
languages have a relatively large percentage of patterns that fall into TT and TTT categories
(known as collocations).

L1 L2
P1 ⇒ pel − X − rud P1 ⇒ pel − X − jic
P2 ⇒ vot− X − jic P1 ⇒ vot− X − tood
P3 ⇒ dak − X − tood P1 ⇒ dak − X − rud

X(2)={wadim, kicey}
X(6)={wadim, kicey, puser, fengle, coomo, loga}
X(12)={wadim, kicey, puser, fengle, coomo, loga, gople, taspu, hiftam, benez, vamey, skiger}
X(24)={wadim, kicey, puser, fengle, coomo, loga, gople, taspu, hiftam, benez, vamey, skiger,
benez, gensim, feenam, laeljeen, chila, roosa, plizet, balip, malsig, suleb, nilbo, wiffle}

Table S8: Definition of the L1 and L2 languages.
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on 432 strings from L1, using 30 learners and various sizes ofX. Performance was evaluated in

the same manner as in the Gómez study. The test set consisted of 12 strings: 6 from L1 (which

should be accepted) and 6 from L2 (which should be rejected). The results are as follows: when

L is set to 3 (η = 0.6, α = 0.01), and|X| is set to2, 6, 12, 24 elements,ADIOS accepts all the

sentences of L1 while rejecting14 ± 27%, 50 ± 17%, 86 ± 14%, 82 ± 17% sentences of L2,

respectively. Performance level increases monotonically with|X|, in accordance with human

data. Training withL = 4 yielded100% acceptance rate for L1 and100% rejection rate for L2,

irrespectively of|X|, indicating a perfect ability of the algorithm to capture the non-adjacent

dependency rule with the proper choice of parameters.

5.2 Grammaticality judgments

We have assessed the ability of theADIOS model to deal with novel inputs2 by introducing an

input module(described below). After training on transcribed speech directed at children (a

corpus of 300,000 sentences with1.3 million words, taken from the CHILDES collection (5)),

the input module was subjected to grammaticality judgment tests, in the form of multiple choice

questions. The algorithm3 identified 3400 patterns and 3200 equivalence classes. The input

module was used to process novel sentences by forming their distributed representations in terms

of activities of existing patterns (a similar approach had been proposed for novel object and

scene representation in vision (6)). These values, which supported grammaticality judgment,

were computed by propagating activation from bottom (the terminals) to top (the patterns). The

initial activitiesaj of the terminalsej were calculated given a stimuluss1, . . . , sk as follows:

aj = max
l=1..k

{
P (sl, ej) log

P (sl, ej)

P (sl)P (ej)

}
(6)

whereP (sl, ej) is the joint probability ofsl andej appearing in the same equivalence class,

2Including sentences with novel vocabulary items that are not fully represented by the trained system.
3An earlier version ofADIOS, which did not use the full conditional probability matrix of eq. 1.
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andP (sl) andP (ej) are the probabilities ofsl andej appearing in any equivalence class. For

an equivalence class, the value propagated upward was the strongest non-zero activation of its

members; for a pattern, it was the average weight of the children nodes, on the condition that all

the children were activated by adjacent inputs. Activity propagation continued until it reached

the top nodes of the pattern lattice. When this algorithm encounters a novel word, all the mem-

bers of the terminal equivalence class contribute a value ofε = 0.01, which is then propagated

upward as before. This enables the model to make an educated guess as to the meaning of the

unfamiliar word, by considering the patterns that become active. Figure S9 shows the activation

of a pattern (#185) by a sentence that contains a word in a novel context (new), as well as other

words never before encountered in any context (Linda, Paul).

We assessed this approach by subjecting a single instance ofADIOS to five different gram-

maticality judgment tests reported in the literature (7–10); see Figure S10 (left). The results of

one such test, used in English as Second Language (ESL) classes, are described below. This

test has been administered in Göteborg (Sweden) to more than10, 000 upper secondary levels

students (that is, children who typically had 9 years of school, but only 6-7 years of English).

The test consists of100 three-choice questions (Table S9), with65% being the average score

for the population mentioned. For each of the three choices in a given question, our algorithm

provided a grammaticality score. The choice with the highest score was declared the winner; if

two choices received the same top score, the answer was “don’t know”. The algorithm’s perfor-

mance is plotted in Figure S10 (right) against the size of the CHILDES training set. Over the

course of training, the proportion of questions that received a definite answer grew (red bars),

while the proportion of correct answers remained around60% (blue curve); compare this to the

45% precision with20% recall achieved by a straightforward bi-gram benchmark.4

4Chance performance in this test is33%. We note that the corpus used here was too small to train ann-gram
model forn > 2; thus, our algorithm effectively overcomes the problem of sparse data by putting the available data
to a better use.
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Figure S9: An active pattern responding to the partially novel inputLinda and Paul have a
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sentence choice 1 choice 2 choice 3
The pilot look worried. isn’t doesn’t don’t
She asked me at once. come to come coming
The tickets have been paid for, so younot worry. may dare need
We’ve gone slightly course. of off from

Table S9: Sample questions from a multiple-choice test used in ESL instruction in Göteborg,
Sweden. A score< 50% in this 100-question test (available online) is considered pre-
intermediate,50− 70% intermediate, and a score> 70% advanced.

benchmark #item correct answered correct answered
ADIOS bi-gram

Linebarger, Schwartz
and Saffran, 1983

Lawrence, Giles and
Fong, 2000

Allen and Seidenberg,
1999

Martin and Miller, 2002

Goteborg/ESL

25

70

10

10

100

215

65% 65%

59% 73%

83% 60%

75% 80%

58% 57%

61% 64%

42% 92%

38% 63%

40% 50%

67% 60%
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#sentences
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Figure S10:Left: the results of several grammaticality tests reported in the literature.Right: a
summary of the performance ofADIOS in the G̈oteborg ESL test, plotted against the number of
sentences (paths) scanned during training (red bars: recall; blue rectangles: precision).

6 Bioinformatics

6.1 Classification of enzymes classes: supplement to Figure 4A

We evaluated the ability of root patterns found byADIOS to support functional classification of

proteins (enzymes). The function of an enzyme is specified by an Enzyme Commission (EC)

name. The name corresponds to an EC number, which is of the form: n1:n2:n3:n4. In this ex-

periment, we concentrated on the oxidoreductases superfamily (EC 1.x.x.x). Protein sequences

and their EC number annotations were extracted from the SwissProt database Release 40.0; se-

quences with double annotations were removed. First,ADIOS was loaded with all the 6751

proteins of the oxidoreductases superfamily. Each path in the initial graph thus corresponded to
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a sequence of amino acids (20 symbols).

The training stage consisted of the two-stage action described in section 2.2. In the first

stage (η = 0.9, α = 0.01), the algorithm identified10, 200 motifs (words). In the second

stage (η = 1.0, α = 0.01) after removing those letters that were not associated with one of

the identified motifs, it extracted additional 938 patterns. Classification was tested on level 2

(EC 1.x, 16 classes) and on level 3 (EC 1.x.x, 54 classes). Proteins were represented as vec-

tors of ADIOS root patterns. A linear SVM classifier (SVM-Light package, available online at

http://svmlight.joachims.org/) was trained on each class separately, taking the proteins of the

class as positive examples, and the rest as negative examples. 75% of the examples were used

for training and the remainder for testing. Performance was measured as Q = (TP + TN)/(TP +

TN + FP + FN), where TP, TN, FP and FN are, respectively, the number of true positive, true

negative, false positive, and false negative outcomes. Table S10 presents the performance of

the ADIOS algorithm on level 2 alongside the performance of the SVM-PRot system (11); Ta-

ble S11 presents the performance on level 3. TheADIOS performance matched the performance

of the SVM-PRot system, even though the latter uses a representation composed of features

such as hydrophobicity, normalized Van der Waals volume, polarity, polarizability, charge, sur-

face tension, secondary structure and solvent accessibility, while we use solely the structure

found by our algorithm in the amino acid sequence data. The average recall/precision on level 2

was71 ± 13% and90 ± 9%, respectively, while recall/precision on level 3 was70 ± 26% and

93 ± 23%, indicating that theADIOS representation can accurately discriminate the enzyme’s

low-level functionality.

6.2 A compression ratio analysis: supplement to Figure 4B,C

Our algorithm also provides a useful tool for identifying Open Reading Frames (ORF) and cod-

ing regions in DNA sequences, based on comparing the description length of theADIOS repre-

sentation before and after learning. The description length of theADIOS representation consists
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Class TP FN FP TN ADIOS Q recall precision SVM-Prot Q
1.1 333 89 64 1201 0.91 0.79 0.84 0.92
1.2 110 49 26 1502 0.96 0.69 0.81 0.99
1.3 62 36 14 968 0.95 0.63 0.82 0.98
1.4 33 23 9 556 0.95 0.59 0.79 0.99
1.5 20 19 8 384 0.94 0.51 0.71 0.97
1.6 198 23 25 1441 0.97 0.90 0.89 0.99
1.7 23 13 2 365 0.96 0.64 0.92 0.99
1.8 51 21 3 717 0.97 0.71 0.94 0.99
1.9 117 21 4 1376 0.98 0.85 0.97 0.96
1.10 16 13 0 292 0.96 0.55 1.00 0.96
1.11 61 16 3 772 0.98 0.79 0.95 0.98
1.13 16 15 2 315 0.95 0.52 0.89 0.95
1.14 106 41 13 1462 0.97 0.72 0.89 0.95
1.15 54 4 0 582 0.99 0.93 1.00 0.99
1.17 22 6 0 285 0.98 0.79 1.00 0.97
1.18 32 10 1 424 0.98 0.76 0.97 0.98

Table S10: The performance of theADIOS algorithm versus the SVM-Prot system on level 2.

of two parts: the graph (vertices and paths) and the identified patterns. Thecompression ratio

of the description length can be quantified by evaluating the decrease in the physical memory it

occupies (in bits). We have calculated the compression at several points along the curves of the

ATIS-CFG recall/precision graph (Figure 3B in the main paper). Figure S11 shows the corre-

lation between the recall/precision levels (ordinate) and the compression rate (abscissa). It can

be seen thatADIOS recall level strongly depends on (increases with) the compression level, but

the precision level only weakly depends on the latter. The compression ratio characteristic is

particularly useful when comparing the performance ofADIOS on different data for which the

target “grammars” are not available. The ORF problem is a typical example of such an analysis.

7 Computational Complexity

We conducted several experiments based on the TA1 grammar to estimate the computational

complexity of ADIOS. We found four variables that have major effects: the total number of
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class TP FN FP TN Q Recall Precision
1.1.1 331 67 48 1241 0.93 0.83 0.87
1.1.3 4 4 0 80 0.95 0.50 1.00
1.1.99 6 8 0 147 0.95 0.43 1.00
1.10.2 8 8 1 166 0.95 0.50 0.89
1.10.3 6 3 0 95 0.97 0.67 1.00
1.10.99 3 0 0 30 1.00 1.00 1.00
1.11.1 62 15 4 771 0.98 0.81 0.94
1.12.99 6 0 0 65 1.00 1.00 1.00
1.13.11 15 12 0 277 0.96 0.56 1.00
1.13.12 0 3 0 30 0.91 0.00 0.00
1.14.11 8 3 0 117 0.98 0.73 1.00
1.14.12 4 1 0 55 0.98 0.80 1.00
1.14.13 14 11 1 251 0.96 0.56 0.93
1.14.14 48 9 0 572 0.99 0.84 1.00
1.14.15 8 1 0 95 0.99 0.89 1.00
1.14.16 6 0 0 67 1.00 1.00 1.00
1.14.18 1 2 0 35 0.95 0.33 1.00
1.14.19 6 0 0 65 1.00 1.00 1.00
1.14.99 15 3 0 180 0.98 0.83 1.00
1.15.1 53 5 2 580 0.99 0.91 0.96
1.16.1 2 3 0 52 0.95 0.40 1.00
1.17.4 21 7 1 281 0.97 0.75 0.95
1.18.1 7 4 0 117 0.97 0.64 1.00
1.18.6 25 5 0 307 0.99 0.83 1.00
1.2.1 95 29 4 1236 0.98 0.77 0.96
1.2.3 3 0 0 32 1.00 1.00 1.00
1.2.4 10 6 0 165 0.97 0.63 1.00
1.2.7 2 6 0 82 0.93 0.25 1.00
1.2.99 2 5 0 72 0.94 0.29 1.00
1.21.3 3 0 0 32 1.00 1.00 1.00
1.3.1 29 8 1 369 0.98 0.78 0.97
1.3.3 23 11 0 347 0.97 0.68 1.00
1.3.5 4 0 0 45 1.00 1.00 1.00
1.3.7 0 3 0 37 0.93 0.00 0.00
1.3.99 13 5 1 181 0.97 0.72 0.93
1.4.1 15 5 0 207 0.98 0.75 1.00
1.4.3 10 12 0 222 0.95 0.45 1.00
1.4.4 2 1 0 35 0.97 0.67 1.00
1.4.99 6 1 0 77 0.99 0.86 1.00
1.5.1 18 12 1 299 0.96 0.60 0.95
1.5.3 0 3 0 37 0.93 0.00 0.00
1.5.99 2 1 0 37 0.98 0.67 1.00
1.6.1 4 1 0 52 0.98 0.80 1.00
1.6.2 5 0 0 50 1.00 1.00 1.00
1.6.5 162 5 8 1512 0.99 0.97 0.95
1.6.99 24 19 8 429 0.94 0.56 0.75

Table S11: The performance of theADIOS algorithm on level 3.

23



class TP FN FP TN Q Recall Precision
1.7.1 10 4 0 145 0.97 0.71 1.00
1.7.2 5 0 0 55 1.00 1.00 1.00
1.7.3 3 2 0 50 0.96 0.60 1.00
1.7.99 5 5 0 107 0.96 0.50 1.00
1.8.1 30 4 0 345 0.99 0.88 1.00
1.8.4 30 4 0 342 0.99 0.88 1.00
1.9.3 110 28 6 1374 0.98 0.80 0.95
1.97.1 3 0 0 32 1.00 1.00 1.00

Table S11 (continued): The performance of theADIOS algorithm on level 3.

Enzyme Class Pattern
1.1.1 WSG{VNVAGV, RT}
1.1.1 GKVIKCKAA VL
1.1.1 ALVTG {AGK, ST, AAQ, AS, SR, SK, TS, NK} GIG
1.1.1 ANQNGAIWKLDLG LDA
1.1.1 AAY {GEV, SSVL, STV, SSV} {MN,AQA}
1.1.1 LTNKNV IFVAGLGGIGLDTS
1.2.1 IF IDG EH GTTGLQI
1.2.1 VSV IDNLVKGA GQAIQN
1.4.3 TG {FQ,GI} YGL
1.6.5 TD {RVL, LKSLI} AY
1.6.5 IAL {TSL, ME, PT} HT
1.8.1 FT {EL, VLPM, HL} YP
1.8.4 EVR {SAHG,SNA,KNA,RAA,SKL,RFA,KYD} DS
1.8.4 {NR,TT} QG
1.11.1 VKFHWKPTCGVK {SM, CL}
1.11.1 {QE,QP} WWPAD
1.11.1 {AI,AP} KFPDFIHTQKR
1.11.1 FDHER IPERVVHARG
1.11.1 GIPASYR HM GFGSHT
1.11.1 VS LDKARRLLWPIKQKYG
1.15.1 FW {VVN,LVN,MP} WD
1.18.6 {IPL,CIG} VHGGQGC MFV

Table S12: Some of the specificADIOS patterns appear in specific Enzyme Classes.
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words in a given corpus, the average sentence length, the size of the initial lexicon and the value

of the context window parameter L. For each of these, we conducted an experiment that exclu-

sively manipulated the variable in question, while measuring the time until convergence. The

results, plotted in Figure S12, reveal the following dependencies: the training time grows linearly

with the size of the corpus, and logarithmically with the average sentence length. It shows in-

verse power dependence both on respect the lexicon size and on the value of L. Overall, the com-

putational complexity ofADIOS according to this empirical estimate isO
(
nlog (l) /

(
LλNγ

))
,

wheren is the total number of words in the corpus,l is the average sentence length,L is the

value of context window parameter, andN is the lexicon size. The conclusion from this exper-

iment is thatADIOS is easily scalable to larger corpora; this is consistent with the actual tests

described in the main paper.

Conclusions

The massive, largely unsupervised, effortless and fast feat of learning that is the acquisition of

language by children has long been a daunting challenge for cognitive scientists (12, 13) and

for natural language engineers (14–16). Because a completely bias-free unsupervised learning

is impossible (12, 17, 18), the real issue in language acquisition is to determine the constraints

that a model of “grammar induction” should impose — and to characterize those constraints

that infants acquiring language do in fact impose — on the learning procedure. In our approach,

the constraints are defined algorithmically, in the form of a method for detecting, in sequential

symbolic data, of units (patterns and equivalence classes) that are hierarchically structured and

are supported by context-sensitive statistical evidence.

In linguistics, our method should be of interest to researchers of various theoretical persua-

sions who construe grammars as containing — in addition to general and lexicalized (19, 20)

rules — “inventories” of units of varying kinds and sizes (21, 22) such as: idioms and semi-
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productive forms (23, 24), prefabricated expressions (25, 26), “syntactic nuts” (27), frequent

collocations (28), multiword expressions (29, 30), and constructions (31–34). In addition, the

growing collection of patterns revealed by our algorithm in various corpora should complement

both syntax-related resources such as the Penn Treebank (35) and semantics-oriented resources

such as the WordNet (36), the PhraseNet (37), and the Berkeley FrameNet (38,39).
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