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Abstract

We present a novel unsupervised method for extract-
ing meaningful motifs from biological sequence data. This
de novo motif extraction (MEX) algorithm is data driven,
finding motifs that are not necessarily over-represented in
the data. Applying MEX to the oxidoreductases class of en-
zymes a relatively small set of motifs is obtained. This set
spans a motif-space that is used for functional classifica-
tion of the enzymes by an SVM classifier. The classifica-
tion based on MEX motifs surpasses that of two other SVM
based methods: SVMProt, a method based on the analysis
of physical-chemical properties of a protein generated from
its sequence of amino acids, and SVM applied to a Smith-
Waterman distances matrix. Our findings demonstrate that
the MEX algorithm extracts relevant motifs, supporting a
successful sequence-to-function classification.
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Introduction

It is commonly accepted that high sequence similarity
guarantees functional similarity of proteins. A contempo-
rary analysis of enzyme function conservation by Tian and
Skolnick [14] suggests that 40% pairwise sequence identity
can be used as a threshold to certify functional similarity,
i.e. the first three digits of the Enzyme Commission (EC)
number are identical1. Using pairwise sequence similarity,

1The function of an enzyme is specified by a name and a number given
to it by the Enzyme Commission (EC). The EC number consists of four
numbers, n1:n2:n3:n4, corresponding to four levels of classification. The

and combining it with the Support Vector Machine (SVM)
classification method [15, 10], Liao and Noble [7] have ar-
gued that they obtain a significantly improved remote ho-
mology detection relative to existing state-of-the-art algo-
rithms.

There are alternative sequence-based approaches to the
task of protein classification. One is based on general char-
acteristics of the sequence, such as the number of specific
amino-acids within it, as suggested in [6]. A recent vari-
ation of this approach represents the amino-acid sequence
as a sequence of physical-chemical features [3, 4], such as
hydrophobicity, normalized Van der Waals volume, polar-
ity, polarizability, charge, surface tension, secondary struc-
ture and solvent accessibility. Caiet al. [3, 4] have applied
SVM to these feature vectors and reported that the SVM-
Prot technique reaches a high degree of accuracy, at a level
of two digits of the EC number hierarchy, on various en-
zyme subclasses.

An alternative to the straightforward sequence similarity
approach is the usage of motifs. Appropriately chosen se-
quence motifs may be expected to reduce noise in the data
and indicate active regions of the protein, hence improv-
ing predictability of its function. A protein can then be
represented as a ‘bag of motifs’ [1] (i.e. neglecting their
particular order on the linear sequence), or a vector in a
space spanned by these motifs. A recent work by Ben-Hur
and Brutlag [2], based on the eMOTIF approach [9, 8], led
to very good results. Starting out with 5911 enzyme se-
quences of the oxidoreductases class, which consisted 129

oxidoreductases class discussed in this paper correspondsto n1=1, one
of the six main divisions. For this class, n2 (subclass) specifies electron
donors, n3 (sub-subclass) specifies electron acceptors andn4 indicates the
exact enzymatic activity.



EC subclasses, they based their analysis on 59783 regular-
expression eMOTIFs. By using an appropriate feature se-
lection method they obtained success rates well over 90%
for a variety of classifiers.

The approach presented in this work is motif based.
Its novelty is the employed motif extraction algorithm
(MEX). Conventional approaches [5] construct motifs in
terms of position specific weight matrices, or else use hid-
den Markov models and Bayesian networks, hence are su-
pervised to some extent. MEX extracts motifs from proteins
sequential data in anunsupervisedmanner, without requir-
ing over-representation of its amino-acid motifs in the data
set. MEX motifs are explicit strings in contradistinction to
position-specific weight matrices or regular expressions.In
the application described below, 3165 MEX motifs are ex-
tracted. This is a low number of motifs in comparison with
the 59783 regular-expression eMOTIFs used by Ben-Hur
and Brutlag [2].

In what follows, we demonstrate that an SVM analysis
of oxidoreductases enzymes based on MEX motifs leads to
results that are comparable to those obtained by an SVM
based on pairwise sequence similarity on a level 2 classi-
fication tasks and to better results on a level 3 classifica-
tion tasks. Furthermore, it outperforms the results obtained
by the SVMProt method, even though the latter is based
on physical and chemical properties of the amino-acid se-
quence. Moreover, our algorithm is highly predictive of
function, down to the third level (sub-subclass) of the EC
hierarchy.

The Motif Extraction Algorithm (MEX)

MEX is a motif extraction algorithm that serves as the
basic unit of ADIOS [12, 13], an unsupervised method for
extraction of syntax from linguistic corpora. We apply it to
the task of finding sequence-motifs within biological data.
Consider a data set of sequences of variable length, each
such sequence expressed in terms of an alphabet of finite
size N (e.g. N=20 amino-acids in proteins). The N letters
form vertices of a graph on which the sequences are placed
as ordered paths. Each sequence defines such a path over
the graph.

In terms of all p(ej |ei) the graph defines a Markov
model. Moreover, using any path on the graph, to be called
henceforth a search-path, we find a particular instantiation
of a variable order Markov model up to order k, where k
is the length of the search-path. For each such search-path
(e1; ek) = e1e2 · · · ek we define a right-moving probability
function, whose value ati, j ≤ k is

PR(ei; ej) = p(ej |eiei+1ei+2...ej−1) =
l(ei; ej)

l(ei; ej−1)
(1)

wherel(ei; ej) is the number of occurrences of sub-paths

(ei; ej) in the graph. Starting from the other end of the path
we define a left-moving probability function

PL(ej ; ei) = p(ei|ei+1ei+2...ej−1ej) =
l(ej ; ei)

l(ej ; ei+1)
. (2)

Fig. 1 demonstrates the type of structures that we ex-
pect to find in our graph - an assimilation of paths over a
subsequence of the search-path. Such a subsequence is a
candidate motif. The criteria for motif selection are defined
by local maxima ofPL andPR signifying, respectively, the
beginning and ending of a motif.

Figure 1. The definition of a motif within the
MEX algorithm. Note that the maxima of PL

and PR defines the beginning and ending of
the motif, respectively. Descents in PL and
PR following the maxima signify divergence
of paths.

A drop in the probability functions is defined as:

DR(ei; ej) = PR(ei; ej)/PR(ei; ej−1) (3)

DL(ej ; ei) = PL(ej ; ei)/PL(ej ; ei+1) (4)

The threshold parameter ,η, is defined as follows: the
location ej−1 is declared as the ending of the motif if
DR(ei; ej) < η. Analogously,ei+1 is declared as the begin-
ning of the motif ifDL(ej ; ei) < η. Since the experimen-
tal probabilities,PR(ei; ej) andPL(ej ; ei), are determined
by finite numbers of paths, a statistical measure is intro-
duced in order to avoid erroneous results. Hence, we cal-
culate the significance values of bothDR(ei; ej) < η and
DL(ej ; ei) < η and require that their maximum be smaller



than a parameterα < 1. In the following application we
have setη = 0.9 andα = 0.01. Once the algorithm reaches
the stop criteria (e.g. ceases to locate new patterns) they are
sorted in a length-significance descending order, by which
their loci are identified on the original data.

SVM functional classification based on MEX
motifs

We have concentrated our analysis on the oxidoreduc-
tases class of enzymes. 6602 protein sequences and their
EC number annotations were extracted from the SwissProt
database Release 40.0. These proteins served as the data-
set to which MEX was applied. The enzymes are classified
into 16 distinct subclasses of level 2 and 32 distinct sub-
subclasses of level 3.

The algorithm identified 3165 motifs of various lengths.
These motifs are found on 3739 of the enzyme sequences to
which MEX was applied. Classification was tested on lev-
els 2 (subclass) and level 3 (sub-subclass) of the EC num-
ber. Subclasses were required to have a sufficient num-
ber of elements to ensure reasonable statistics. Protein se-
quences were represented as ‘bags of MEX-motifs’. A lin-
ear SVM classifier (SVM-Light package, available online
at http://svmlight.joachims.org/) was trained on each sub-
class separately, taking the protein sequences of the sub-
class as positive examples and the protein sequences of
other subclasses as negative examples. 75% of the exam-
ples were used for training and the remaining examples for
testing. The train-test procedure was repeated on six dif-
ferent random choices of train-test sets in order to accu-
mulate statistics. We have tested various subsets of MEX
motifs and discovered that the subset of motifs longer than
five amino-acids leads to optimal results in the classifica-
tion task. There are 1222 such motifs, spanning the space
of 3739 enzymes. Enzymes are classified into 16 distinct
subclasses of level 2 and 32 distinct sub-subclasses of level
3.

The obtained results are compared to those of two other
approaches. The first, SVMProt [3, 4], uses a performance
measurement parameter defined as

Q =
TP + TN

TP + TN + FP + FN
, (5)

where TP, TN, FP and FN denote the number of true pos-
itive, true negative, false positive, and false negative out-
comes respectively. The SVMProt results presented below
are obtained from their published results. However, since
the large negative set used in each classification task quickly
yields a high Q value, we have chosen to use the Jaccard
score

J =
TP

TP + FP + FN
(6)

instead. Not taking into account TN, this performance mea-
surement is more discriminative than Q.

The second approach, the Smith-Waterman algorithm
[11], is based on a one-versus-all sequence similarity ap-
proach. This algorithm has been applied to the same set of
3739 oxidoreductases sequences represented by MEX mo-
tifs. The ariadne tool has been used (written by R. Mott,
available online at http://www.well.ox.ac.uk/ariadne) in or-
der to obtain the p-values distances matrix,MSW , defining
the feature space of the SVM classifier. A minimal p-value
threshold of10−6 was imposed in order to allow usage of
p-values logarithm, defining a normalized distances matrix
DSW . This procedure is similar to the approach described
in [7], however, the entire vector ofDSW has been used
in our analysis for specifying an enzyme. The classifica-
tion task has been performed with the same SVM classifier
(linear kernel) employed to the data driven by MEX. The
dataset has been preprocessed in order to produce an appro-
priate input file for the learning task. A random75% : 25%
partition of the data into a training set and a testing set, re-
spectively, has been used for each learning task. The train-
test procedure was repeated on six different random choices
of data sets in order to accumulate statistics.

Fig. 2 shows a comparison of the Jaccard score ob-
tained by MEX, Smith-Waterman analysis and SVMProt
(error deviations are not presented for the latter as they
were not included in their published results). The scores
obtained by MEX are clearly higher than those obtained by
SVMProt and are comparable to those obtained by Smith-
Waterman. The average J-scores are0.89 ± 0.05 for MEX,
0.74 ± 0.13 for SVMProt and0.89 ± 0.06 for the Smith-
Waterman method. Noticeably, there is no correlation be-
tween the size of the subclass and the J-scores obtained by
both MEX and the Smith-Waterman methods. Clearly, if
the size of the subclass is too small, i.e. the number of the
positive examples is small, a large variance in the train/test
different divisions may exist, resulting in large error devi-
ations. However, in most cases, the average J-scores are
high, independent of the tested subclass.

Third level classification results were not compared to
SVMProt as none were included in their published results.
Table 1 presents a comparison of the Jaccard scores ob-
tained by MEX and Smith-Waterman analysis. The scores
obtained by MEX are clearly higher. The average J-scores
are 0.89 ± 0.08 for MEX and 0.86 ± 0.15 for Smith-
Waterman. These findings attest to the meaningful infor-
mation embodied in MEX selected motifs, facilitating a fine
tuned classification of these proteins.

Motif selection

Motifs of various lengths were extracted by applying the
MEX algorithm. The enzyme function classification ca-
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Figure 2. Jaccard scores for second-level EC subclasses obt ained by MEX (upper panel), Smith-
Waterman (second panel) and SVMProt (third panel). The bott om panel depicts the size of each
subclass MEX and the Smith-Waterman method were applied to. The subclasses are labeled accord-
ing to their EC number and are ordered according to size.

pabilities of the motifs were tested using various length-
dependent subsets of motifs. It is important to note that
the coverage (i.e., number of enzyme sequences represented
by the motifs) varies according to the motifs subset selec-
tion. The results demonstrate that the classification task per-
formed by the subset of 1222 motifs of length 6 and longer
obtains high J-scores. In order to comprehend the predic-
tive capabilities of MEX motifs, we have analyzed which of
these motifs are unique (i.e., belong to a single EC subclass
at the second level). Statistics are presented in Fig. 3.

Evidently, motifs of length 6 are both abundant and, con-
comitantly, comprise a large fraction of motifs unique of a
single subclass. Out of the 601 motifs of length 6, 493 are
unique. A level 3 classification task performed solely with
motifs of length 6 yielded an average J-score of0.88± 0.1,

which is essentially as high as the average J-score obtained
by classifying the same set of sequences using the 1222 mo-
tifs of length 6 and longer. Apparently, the 601 motifs of
length 6 serve as an adequate basis for this refined classifi-
cation task.

An additional interesting insight, clarifying the relatively
lower J-scores obtained by an SVM analysis based on the
set of MEX motifs longer than 4 (average J-scores are
0.85± 0.05 for a level 2 classification task and0.83± 0.09
for a level 3 classification task) is the large fraction of non-
unique motifs of length 5 (see Fig. 3) that clearly impairs
the predictive power of the unique motifs.



class # of elements MEX J SW J
1.1.1 959 0.91± 0.03 0.85± 0.04
1.9.3 399 0.92± 0.2 0.80± 0.11
1.2.1 333 0.94± 0.14 0.52± 0.00
1.6.5 331 0.78± 0.17 0.77± 0.11
1.11.1 211 0.98± 0.02 0.89± 0.01
1.14.14 203 0.92± 0.09 0.83± 0.00
1.15.1 153 0.90± 0.06 0.62± 0.08
1.3.3 91 0.87± 0.14 0.69± 0.10
1.8.4 89 0.81± 0.16 0.67± 0.12
1.18.6 87 0.82± 0.12 0.71± 0.12
1.14.13 65 0.93± 0.02 0.91± 0.07
1.8.1 62 0.91± 0.12 0.85± 0.13
1.17.4 60 0.93± 0.1 0.80± 0.08
1.4.1 26 0.89± 0.14 0.94± 0.10
1.6.99 72 0.89± 0.07 0.85± 0.09
1.13.11 51 0.92± 0.06 0.96± 0.00
1.7.1 50 1 0.60± 0.20
1.4.3 39 0.86± 0.04 0.90± 0.02

1.14.99 38 0.77± 0.31 0.69± 0.14
1.3.1 34 0.88± 0.08 0.93± 0.03
1.2.4 31 0.88± 0.03 0.89± 0.03

1.14.15 30 0.83± 0.06 0.91± 0.03
1.3.99 28 0.84± 0.1 0.68± 0.03
1.10.3 24 0.96± 0.04 0.88± 0.05
1.14.19 24 1 1
1.5.1 23 0.76± 0.09 0.61± 0.09

1.14.11 22 0.86± 0.07 0.82± 0.03
1.14.16 22 0.93± 0.11 0.68± 0.07
1.6.2 18 0.92± 0.13 0.80± 0.08

1.18.11 17 0.67± 0.19 0.68± 0.10
1.4.99 17 1 0.87± 0.12
1.1.99 16 0.81± 0.16 0.67± 0.12

Table 1. J-values derived from MEX and
Smith-Waterman analysis, corresponding to
level 3 classification tasks.

Discussion

Applying the MEX algorithm on a group of 7095 en-
zymes, it has been shown that the extracted motifs form
an excellent basis for classifying these enzymes into small
classes known to have different functional roles. In partic-
ular, the classification from sequence to function based on
these motifs of this enzymes class was demonstrated to out-
perform any of the alternative methods.

Applying the MEX algorithm on a group of 6602 en-
zymes, it has been shown that the extracted motifs form an
excellent basis for classifying the enzymes represented by
these motifs into small classes known to have different func-
tional roles. In particular, the classification from sequence
to function based on these motifs of this enzymes class
was demonstrated to outperform the SVMProt method on
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Figure 3. distribution of MEX motifs of lengths
5-10 according to their length. The three sets
correspond to (left) entire set of MEX motifs,
(middle) set of MEX motifs unique to a single
level 2 subclasses and (right) set of MEX mo-
tifs unique to a single level 3 sub-subclass.

the second level classification task and the Smith-Waterman
method on the third level classification task.

Our results are compared with two approaches: (i) Clas-
sification based on pairwise sequence similarity, analogous
to the one employed by [7], using the same SVM proce-
dure that was employed for MEX. As demonstrated, MEX
derived motifs form a better basis for classification at the
third EC number level, indicating that MEX selected motifs
improve the signal to noise ratio inherent in the original se-
quences. (ii) The SVMProt method introduced by [3, 4] on
level 2 data (using their published results). Despite the fact
their method is based on semantic information, i.e. physical
and chemical properties of the sequence of amino-acids, the
results obtained by MEX are better, again indicating that the
MEX selected motifs carry relevant information.

It should be noted that the MEX based classification
is accomplished by using only 1222 motifs of length 6
or longer. Considering the 48 classification tasks for ap-
proximately 4000 proteins, the number of features allow-
ing a successful classification by the MEX algorithm is sur-
prisingly small. Furthermore, as opposed to the regular-
expression motifs used by other methods, MEX motifs are
all deterministic consecutive amino-acid sequences.

Such regular-expression motifs approach was presented
by [2]. They have used regular-expression motifs of average
length of 21 amino-acids (termed eMOTIFs) derived in a
supervised manner. Applying a feature-selection procedure
to select approximately 1000 eMOTIFs out of their original



very large set of eMOTIFs, they have achieved impressive
classification results. However, while the small number of
selected eMOTIFs is comparable to the 1222 motifs used
by our approach, it should be noted that the determinis-
tic, consecutive motif sequences extracted by MEX spans
a much smaller sequence space than the one spanned by the
eMOTIFs, yet, achieving successful classification. Unfor-
tunately, a direct comparison with this work could not be
made due to insufficient data.

The application of the MEX algorithm studied here ap-
plies only a single level of feature extraction. Higher level
patterns may be extracted by iteratively applying MEX,
where each MEX iteration uses the observed sequence-
motifs as vertices in the MEX graph. Moreover, utilizing
the full extent of the ADIOS approach [13] may further re-
veal higher syntactic structures in biological sequence data,
enabling a more extensive coverage of enzyme sequences.
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